Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 78(11): 5339-48, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23635000

RESUMO

The synthesis of the enantiomerically pure N-Boc 9-azabicyclo[3.3.1]nonane-2,6-dione (4b), a potentially useful chiral building block, from N-Bn and N-Boc 9-azabicyclo[3.3.1]nonane-2,6-diols 2a and 2b was accomplished. The enantiomer resolution of diols 2a and 2b was achieved by crystallization of their diastereomeric esters or by kinetic resolution of the racemic diol 2a using lipase from Candida rugosa (CRL). Both enantiomers of N-Boc protected diol 2b were converted into the corresponding enantiomerically pure diones 4b, the absolute configuration of which was determined by comparison of the experimental and simulated circular dichroism (CD) spectra, obtained by ab initio time-dependent density functional theory (TDDFT) calculations. The (-)-(1R,5R)/(+)-(1S,5S) absolute configuration of 4b inferred from the TDDFT calculations was confirmed via analysis of the CD spectrum of endo,endo-dibenzoate (+)-7 derived from diol (+)-2b and application of the benzoate exciton chirality method. The assigned absolute configuration was further supported by the results of kinetic resolution of diol 2a using Candida rugosa lipase, which exhibited kinetic preference toward the (1R,2R,5R,6R)-enantiomer in agreement with the Kazlauskas' rule.


Assuntos
Compostos Azabicíclicos , Oxigênio/química , Compostos Azabicíclicos/síntese química , Compostos Azabicíclicos/química , Compostos Azabicíclicos/isolamento & purificação , Estrutura Molecular , Teoria Quântica , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...